Accepted Manuscript

Vapor-liquid equilibrium measurements for binary mixtures of R1234yf with R32, R125, and R134a

Takumi KAMIAKA, Chaobin DANG, Eiji HIHARA

PII: S0140-7007(12)00203-4

DOI: 10.1016/j.ijrefrig.2012.08.016

Reference: JIJR 2325

To appear in: International Journal of Refrigeration

Received Date: 7 May 2011

Revised Date: 14 August 2012

Accepted Date: 22 August 2012

Please cite this article as: KAMIAKA, T., DANG, C., HIHARA, E., Vapor-liquid equilibrium measurements for binary mixtures of R1234yf with R32, R125, and R134a, *International Journal of Refrigeration* (2012), doi: 10.1016/j.ijrefrig.2012.08.016.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Vapor-liquid equilibrium measurements for binary mixtures of R1234yf with R32, R125, and R134a

Takumi KAMIAKA, Chaobin DANG, Eiji HIHARA^{*}

Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8563, Japan

* Corresponding author: Eiji HIHARA Tel: +81-4-7136-4661, Fax: +81-4-7136-4661, Email: hihara@k.u-tokyo.ac.jp

ABSTRACT

Vapor-liquid equilibria (VLE) measurement results for three binary refrigerant mixtures of R1234yf with R32, R125, and R134a are presented. The VLE properties were measured at mass fractions of R1234yf from 25% to 80%. Equilibrium pressures were measured at temperatures from 273 K to 333 K at 10 K intervals for each binary refrigerant mixture. Measured data were correlated by using both the Peng-Robinson-type and Helmholtz-type equations of state combined with mixing rules. Binary interaction parameters included in each mixing rule were optimized to fit the measured VLE data of each binary mixture. It was found that the temperature glide of the refrigerant mixture R32/R1234yf was much larger than that of the other binary mixtures. Further, it was found that R134a/R1234yf had an azeotropic property around 50/50 wt%. The measured fundamental data of the vapor-liquid equilibrium are crucial for the optimization of binary refrigerant mixture systems.

Keywords:

Thermodynamic property, Equation of state, R1234yf, R32, R125, R134a, Binary mixture

Nomenclature

- *a* energy parameter in PR equation
- *b* size parameter in PR equation
- *E* objective function
- k_{ij} binary interaction parameter
- *P* pressure (Pa)
- *R* universal gas constant (J mol⁻¹ K⁻¹)
- *T* temperature (K)

v	molar volume (m ³ mol ⁻¹)
x	composition in liquid phase
У	composition in gas phase
Greek le	tters
ζ_{ij},ζ_{ij}	binary interaction parameter
ω	acentric factor
subscrip	t
bubble	bubble point
cal	calculated results
c	critical
dew	dew point
exp	experimental results
i	component i
j	component j
red	reducing parameter

1. INTRODUCTION

Increasing concern regarding environmental protection and global warming has led to a reconsideration of the refrigerant technology used in stationary conditioners. The refrigerants currently used are either hydrofluorocarbons (HFCs), which have a high global warming potential (GWP), or hydrochlorofluorocarbons (HCFCs). Transitioning from these refrigerants to a low-GWP refrigerant is an issue of global importance. However, at present, there is no ideal candidate that can meet the requirements of both system performance and environmental performance.

In recent years, R1234yf has been widely accepted as a drop-in solution for mobile air conditioners because of its low GWP of 4 and its thermophysical properties, which are similar to those of R134a. In comparison with R410A, which is widely used in stationary air conditioners, R1234yf has smaller latent heat, which leads to larger mass flow rates, larger pressure drops in heat exchangers and connection pipes, and ultimately, lower coefficients of performance. One approach to resolve this problem is to use a refrigerant mixture of R1234yf with other refrigerants, i.e., R32, R125, or R134a, so as to obtain a larger latent heat. Mixing more than 22 wt% R125 or 36 wt% R134a with R1234yf has additional advantage to cancel the mild flammability of R1234yf (Yamada et al., 2010). The thermophysical properties of these refrigerant mixtures are essential for an investigation of their performance in refrigeration or the heat pump cycle. However, there is lack of information about their thermophysical properties. The only literature available is the modeling of vapor-liquid equilibrium for R32/Isobutane and R32/R1234ze(E) by Akasaka (2011).

In this study, the vapor-liquid equilibrium of three binary refrigerant mixtures of R1234yf with

R32, R125, and R134a were experimentally studied, and both a Peng-Robinson type and a Helmholtz type Equations of state are derived based on the measured data.

2. MEASUREMENTS

2.1. Materials

The R1234yf was provided by SynQuest Laboratories, Inc, and R32, R134a and R125 were provided by Takachiho Chemical Industrial Co., Ltd. For the R32/R1234yf mixture, the purities of R32 and R1234yf were higher than 99.9% and 99%, respectively. The purity of R1234yf sample guaranteed by the manufacture was 99%. Although the composition report provided by the manufacture showed a higher purity, there was no information showing what the containment was. Therefore, in this study, the R1234yf sample was firstly degassed five times using liquid nitrogen to get rid of non-condensation component. In order to eliminate the effect of possible condensation components, measurements of saturation temperature of R1234yf were conducted and the results were compared with that of 99.9% sample, the deviations of the measured saturation temperatures were found less than ± 0.05 K, therefore the effect of condensation component is consider negligible. For R125/R1234yf and R134a/R1234yf mixtures, the purity of all components was more than 99.9%.

2.2. Apparatus

The VLE properties were measured using a static-type apparatus. A schematic of the apparatus is shown in Fig.1. The apparatus consists of a thermostat liquid bath, an equilibrium cell, a sampling system, and measurement instruments. The equilibrium cell used is a single-ended cylinder made of SS304 with inner volume of 150 mL. The outer diameter of the equilibrium cell is 50.8 mm, with a height of 124 mm and a thickness of is 2.4 mm. Temperature of the thermostat liquid bath was measured using a high-precision platinum resistance thermometer, and the results were transferred to a PC through a digital temperature indicator (Chino, CAB-F201). The total temperature measurement uncertainty was estimated to be within ± 0.015 K. The pressure inside the equilibrium cell was measured using a quartz oscillating pressure transmitter (Paroscientific, 1000–1 K), which had an uncertainty of ± 0.7 kPa (0.01% of full scale: 6,890 kPa).

The composition of the vapor phase was measured using a gas chromatograph (Shimadzu, GC-14B). The gas chromatograph was equipped with a flame ionization detector (FID) and a micro-packed column (Shinwa Chem., MICROPACKED ST). The inner volume of the sampling loop is 15 μ L. The uncertainty in the vapor phase composition is estimated to be within ±0.01 mass fraction, which mainly includes the uncertainty of the calibration curves. The liquid phase composition was calculated from the amount of refrigerant mixtures initially charged to the equilibrium cell, the vapor phase composition data actually measured by the gas chromatograph, the

amount of refrigerant mixtures discharged to the gas chromatograph, and current pressure and temperature. normally when the volume of liquid exceeds half of the inner volume of the equilibrium cell, the difference between the overall composition and liquid composition is less than 0.1%. In our experiments, the initial changing liquid volume was set to be about 0.6 of the inner volume. The uncertainty of liquid phase composition is estimated from the uncertainty of charging composition, density of the vapor phase used, and the inner volume of equilibrium cell, sampling loop and the connecting tube. The estimated uncertainty of liquid phase composition is within ± 0.001 mass fraction.

2.3. Measurement procedure

2.3.1. Mixing process

Two sampling cells with the same inner volume of 150 mL were used for weighing the R1234yf and the other component. Degasification of the non-condensable gas was conducted for each component using liquid nitrogen, and the process was repeated five times. The weight of each component in the sampling cell was measured using an electronic balance (Sartorius, with an accuracy of ± 0.001 g) by subtracting the weight of the sampling cell. The component weight in the sampling cell was adjusted in accordance with the intended composition of the final mixture. Finally, both components were transferred from the sampling cells to the equilibrium cell using liquid nitrogen.

2.3.2. VLE Measurement

The equilibrium cell was placed in the thermostat liquid bath. The temperature of thermostat liquid bath and the pressure of the equilibrium cell were monitored continuously. When the variation of temperature smaller than 0.05 K and the change of pressure smaller than 1 kPa within 1 hour, the temperature and pressure are assumed stabilized. The saturated mixture vapor was then sampled using a 6-way switching valve to the sampling loop, and was injected into the gas chromatograph to measure the vapor phase composition. The liquid phase composition was calculated from the overall composition, the vapor phase composition measured, the amount of refrigerant mixtures discharged to the gas chromatograph, and current pressure and temperature. For each condition, measurements were conducted twice to confirm repeatability. The temperature of thermostat liquid bath was changed from 273-333 K at an interval of 10 K.

The sampling loop has a inner volume of 15 μ L. The tubes connecting the equilibrium cell, switching valve and the vacuum pump have outer diameters of 1.6 mm and inner diameters of 0.8 mm. The inner volume of the connecting tube starting from the valve attached to the equilibrium cell to the valve attached to the vacuum pump is 96 μ L. For each measurement, the same amount of vapor as that stored in sampling loop and the connecting tube need to be drew off from the

equilibrium cell, which will cause a slight change in the composition of the liquid phase. The effect of the loss of sample in each measurement was compensated using the inner volume of sampling loop and connecting tube and the measured gas phase composition.

3. RESULTS

The VLE properties were measured in the temperature range of 273–333 K in steps of 10 K. The overall concentration of the more volatile component was 20, 30, 40, 50, and 70 wt% for the R32/R1234yf mixture; 20, 30, 40, and 50 wt% for the R125/R1234yf mixture; and 25, 50, and 75 wt% for the R134a/R1234yf mixture. The results are shown in Figs. 2–4 on the isothermal VLE diagrams.

As shown in Figs. 2 and 3, in the R32/R1234yf and R125/R1234yf systems, azeotropic behavior was not observed under the measurement conditions. On the other hand, for the R134a/R1234yf mixture, as shown in Fig.4, azeotropic behavior was observed. The vapor pressures of R134a and R1234yf are very similar, and the azeotropic point exists around 50 wt% of R134a. All the measured data are provided in Appendix.

4. DISCUSSION

4.1. Equation of state

Measured data were correlated with two types of equation of state, the Peng-Robinson (PR) type and the Helmholtz type.

The PR equation (Peng and Robinson, 1976) is expressed as follows:

$$P = \frac{RT}{v-b} - \frac{a(T)}{v(v+b) + b(v-b)}$$
(1)

with

$$a(T) = 0.45724 \frac{R^2 T_c^2}{P_c} \left\{ 1 + \kappa \left(1 - \sqrt{\frac{T}{T_c}} \right) \right\}^2$$
(2)

$$\kappa = 0.37464 + 1.54226\omega - 0.26992\omega^2 \tag{3}$$

$$b = 0.07780 \frac{RT_c}{P_c} \tag{4}$$

where *a* and *b* are energy and size parameters, respectively. *R* is the universal gas constant. *T*, *P*, and *v* are temperature, pressure, and molar volume, respectively. ω is the acentric factor. Subscript *c* indicates the critical value.

For multi-component mixtures, the following mixing rule is used:

$$a_m = \sum_i \sum_j x_i x_j a_{ij}, \quad b_m = \sum_i x_i b_i$$
(5)

$$a_{ij} = \left(1 - k_{ij}\right) \sqrt{a_i \cdot a_j}, \quad \left(k_{ij} = k_{ji}\right) \tag{6}$$

where x_i is the concentration of *i*th component. Subscripts *m*, *i*, and *j* indicate the value of the mixture, component *i*, and component *j*, respectively. k_{ij} is binary interaction parameter and is generally determined by fitting the measured VLE data.

For a binary mixture, equations (5) and (6) reduce as follows:

$$a_{m} = x_{1}^{2}a_{1} + x_{2}^{2}a_{2} + 2(1 - k_{12})\sqrt{a_{1} \cdot a_{2}}$$

$$b_{m} = x_{1}b_{1} + x_{2}b_{2}$$
(8)

The substance constants used for calculation are shown in Table 1. The values for HFCs are quoted from REFPROP ver. 9.0 database (Lemmon *et al.* 2010); those for R1234yf are taken from Tanaka and Higashi (2009).

The Helmholtz-type equations of state used in this study for R32, R125, R134a, and R1234yf are the same as those in REFPROP ver. 9.0, as reported in Tillner-Roth and Yokozeki (1994), Lemmon and Jacobsen (2005), Tillner-Roth and Baehr (1998), and Richter et al. (2010), respectively.

The mixing model by Lemmon and Jacobsen (2004) was employed. This mixing model is used in REFPROP ver. 9.0 with default binary interaction parameters for mixtures of R1234yf with R32, R125, and R134a. The mixing model without a departure function is expressed as follows:

$$T_{\rm red}(\mathbf{x}) = \sum_{i=1}^{n} x_i T_{c,i} + \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} x_i x_j \zeta_{ij}$$
(9)

$$v_{\rm red}\left(\boldsymbol{x}\right) = \sum_{i=1}^{n} x_i v_{c,i} + \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} x_i x_j \boldsymbol{\xi}_{ij}$$
(10)

where *T*, *v*, and *x* are temperature, molar volume, and composition, respectively. Subscript red indicates the reducing parameter. ζ_{ij} and ξ_{ij} are binary interaction parameters, and they were determined by fitting to measured data. In REFPROP ver. 9.0, it is assumed that $\zeta_{ij} = 0$, because the effect of ξ_{ij} is small.

In this work, binary interaction parameters k_{ij} in the PR equation and ζ_{ij} in the Helmholtz equation were optimized by fitting to measured VLE data. The objective function in optimization is as follows:

$$E = \sum \left(\frac{P_{\text{exp}}}{P_{\text{cal}}} - 1\right)_{\text{bubble}}^{2} + \sum \left(\frac{P_{\text{exp}}}{P_{\text{cal}}} - 1\right)_{\text{dew}}^{2}$$
(11)

where *E* is objective function, P_{exp} and P_{cal} are measured and calculated saturated pressures, subscripts bubble and dew denote the bubble point and dew point, respectively.

Parameter ξ was set to 0. k_{ij} was varied between 0 ~ 1, while ζ_{ij} was varied between -100 ~ 0 to obtain optimized value by which the objective function takes minimum value.

Using optimized and not-optimized interaction parameters in each equation of state, saturated pressure was calculated and compared with measured values. Results are shown in Table 2. It was found that both equations of state with optimized interaction parameters can successfully represent measured saturated pressure. The average absolute deviation was less than 1.13%. On the other hand, REFPROP ver. 9.0 with a default interaction parameter predicts saturation pressure with an average absolute deviation of 3.6–5.3%.

4.2. Temperature Glide

Temperature glide was calculated using the optimized PR equation for the three binary systems studied. Results are shown in Fig. 5. It can be seen that a relatively large temperature glide of 8 K is present at a composition of 20 wt% R32 in the R32/R1234yf mixture. For R125/R1234yf, a maximum temperature glide of 3.7 K was obtained at a composition of 50 wt% R125. This may cause a deterioration in heat transfer performance and a deviation in the mixing rate because of refrigerant leakage. For the R134a/R1234yf mixture, the temperature glide was negligibly small (approximately 0.2 K), and thus, the mixture behaves like a pure refrigerant in the heat pump and refrigeration cycle.

5. CONCLUSION

Vapor-liquid equilibrium of three binary refrigerant mixtures of R1234yf with R32, R125, and R134a were experimentally studied, and both Peng-Robinson type and Helmholtz type Equations of state are derived. The following results were obtained.

- A) For the R32/R1234yf and R125/R1234yf mixtures, non-azeotropic behavior was observed in the measurement range of 273–333 K.
- B) The R134a/R1234yf mixture has an azeotropic point at a composition of 50/50 wt%.
- C) Based on the measured VLE data, the PR and Helmholtz equations of state with mixing rules were successfully optimized. The average absolute deviation of calculated saturation pressure was less than 1,13%.
- D) Temperature glides were estimated for each binary mixture. It was found that the maximum temperature glide for R32/R1234yf is 8 K and that for R125/R1234yf is 3–4 K.

Acknowledgments

This research was supported by the project "development of non-fluorinated energy-saving refrigeration and air conditioning systems" by the New Energy and Industrial Technology Development Organization. The authors are grateful to Prof. R. Akasaka of Kyushu Sangyo

University for his valuable comments.

REFERENCE

- Akasaka, R., 2011. Vapor-Liquid Equilibrium Modeling for Mixtures of HFC-32 + Isobutane and HFC-32 + HFO-1234ze(E), *International Journal of Air-Conditioning and Refrigeration*, 19(2): 93-97,
- Lemmon, E.W., Jacobsen, R.T., 2005. A New Functional Form and New Fitting Techniques for Equations of State with Application to Pentafluoroethane (HFC-125), J. Phys. Chem. Ref. Data, 34(1): 69-108.
- Lemmon, E.W., Jacobsen, R.T., 2004. Equations of State for Mixtures of R-32, R-125, R-134a, R-143a, and R-152a, J. Phys. Chem. Ref. Data, 33(2): 593-620.
- Lemmon, E.W., Huber, M.L., McLinden, M.O., 2010. REFPROP: Reference Fluid Thermodynamic and Transport Properties, NIST Standard Database, Ver. 9.0.
- Peng, D., Robinson, D.B., 1976. A New Two-constant Equation of State, Ind. Eng. Chem. Fundam., 15: 59-64.
- Richter, M., McLinden, M.O., Lemmon, E.W., 2011. Thermodynamic Properties of 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf): p-p-T Measurements and an Equation of State, J. Chem. Eng. Data, 56(7): 3254-3264.
- Tanaka, K., Higashi, Y., 2010. Thermodynamic Properties of R1234yf (2,3,3,3-tetrafluoropropene), Int. J. Refrigeration, 33(3): 474-479.
- Tillner-Roth, R., Yokozeki, A., 1997. An International Standard Equation of State for Difluoromethane (R-32) for Temperatures from the Triple Point at 136.34 K to 435 K and Pressures up to 70 MPa, J. Phys. Chem. Ref. Data, 26(6): 1273-1328.
- Tillner-Roth, R., Baehr, H.D., 1994. An International Standard Formulation of the Thermodynamic Properties of 1,1,1,2-tetrafluoroethane (HFC-134a) for Temperatures from 170 K to 455 K at Pressures up to 70 MPa, J. Phys. Chem. Ref. Data, 26: 657-729.
- Yamada, Y., Tsuchiya, T., Shibanuma, T., 2010. Environmentally Friendly Non-flammable Refrigerants, 2010 International Symposium on Next-generation Air Conditioning and Refrigeration Technology, Tokyo, Japan, GS07 1-7.

APPENDIX

333.12

3130.5

0.397

0.494

Table A.1 Data of VLE Measurements for (1) R32/(2) R1234yf

able A.I	Data of VL	E Measurer	nems for (1)	K32/(.	2) K1254yi			
<i>T</i> [K]	P [kPa]	$x_1 [g g^{-1}]$	$y_1 [g g^{-1}]$		<i>T</i> [K]	P [kPa]	$x_1 [g g^{-1}]$	$y_1 [g g^{-1}]$
	(0/1	100)				(5	0/50)	
273.33	318.7	0.000	0.000		273.32	723.2	0.497	0.679
283.15	438.2	0.000	0.000		283.13	973.5	0.497	0.651
293.16	592.2	0.000	0.000		293.14	1290.0	0.496	0.649
303.17	783.3	0.000	0.000		303.18	1675.4	0.495	0.643
313.18	1017.8	0.000	0.000		313.18	2142.1	0.495	0.627
323.10	1298.0	0.000	0.000		323.12	2692.4	0.495	0.610
333.11	1636.4	0.000	0.000		333.15	3347.1	0.497	0.601
	(20	/80)				(70	/30)	
273.33	569.5	0.196	0.408		273.37	775.1	0.698	0.780
283.16	763.0	0.195	0.392		283.08	1044.1	0.697	0.784
293.15	1006.0	0.194	0.370		293.14	1388.6	0.696	0.779
303.15	1300.6	0.194	0.352		303.17	1807.4	0.695	0.772
313.18	1648.0	0.193	0.341		313.18	2319.9	0.695	0.768
323.10	2061.8	0.192	0.324		323.21	2929.4	0.694	0.761
333.12	2548.8	0.193	0.294		333.10	3646.4	0.693	0.754
	(30	/70)				(10	0/0)	
273.32	636.4	0.297	0.521	7	273.33	817.8	1.000	1.000
283.14	854.0	0.297	0.502		283.14	1106.9	1.000	1.000
293.15	1128.3	0.296	0.490		293.16	1475.2	1.000	1.000
303.15	1462.3	0.296	0.475		303.18	1927.6	1.000	1.000
313.17	1860.0	0.296	0.454		313.20	2480.1	1.000	1.000
323.11	2328.8	0.296	0.428		323.22	3144.2	1.000	1.000
333.10	2885.7	0.298	0.425		333.14	3927.5	1.000	1.000
	(40	/60)			(x_1)	$/x_2$) Mixing	g ratio in ma	SS
273.34	686.8	0.397	0.591					
283.14	922.5	0.396	0.582					
293.13	1219.7	0.395	0.573					
303.15	1582.0	0.395	0.559					
313.19	2015.7	0.394	0.549					
323.10	2526.1	0.395	0.511					

	$P[l_2D_2]$	$r [\sigma \sigma^{-1}]$	$v_{1} [q_{1}q^{-1}]$		$P[l_2D_2]$	$r [\alpha \alpha^{-1}]$	$v [\alpha \alpha^{-1}]$
	1 [KF d]	MILSS J	yilgg J		i [KF a]	NILSS J	yilgg J
	(2	0/80)			(4	0/60)	
273.32	567.6	0.196	0.417	273.32	683.9	0.391	0.608
283.13	760.8	0.195	0.391	283.14	918.1	0.389	0.588
293.15	1003.9	0.195	0.374	293.16	1212.7	0.386	0.575
303.16	1299.1	0.194	0.358	303.17	1570.8	0.382	0.556
313.18	1648.4	0.193	0.335	313.19	1994.2	0.381	0.527
323.10	2061.7	0.193	0.308	323.10	2493.1	0.378	0.506
333.11	2548.8	0.194	0.292	333.11	3068.8	0.370	0.501
	(30/	/70)			(50	/50)	
273.31	632.8	0.290	0.522	273.33	724.2	0.498	0.653
283.13	848.4	0.288	0.510	283.14	974.6	0.497	0.648
293.14	1118.4	0.285	0.493	293.15	1291.3	0.497	0.643
303.17	1446.0	0.281	0.474	303.15	1678.2	0.497	0.630
313.18	1831.9	0.277	0.460	313.19	2142.8	0.497	0.618
323.11	2283.9	0.277	0.413	323.10	2692.9	0.497	0.598
333.13	2813.1	0.269	0.412	333.11	3348.6	0.499	0.594

Table A.2 Data of VLE Measurements for (1) R32/(2) R1234yf

8

<i>T</i> [K]	P [kPa]	$x_1 [g g^{-1}]$	$y_1 [g g^{-1}]$		<i>T</i> [K]	P [kPa]	$x_1 [g g^{-1}]$	$y_1 [g g^{-1}]$
	(0	/100)				(40)/60)	
273.31	318.3	0.000	0.000		273.33	460.3	0.398	0.574
283.13	438.1	0.000	0.000		283.11	621.6	0.398	0.559
293.17	592.8	0.000	0.000		293.17	828.3	0.397	0.546
303.19	784.8	0.000	0.000		303.19	1081.1	0.397	0.530
313.20	1020.1	0.000	0.000		313.09	1382.6	0.397	0.514
323.13	1302.6	0.000	0.000		323.15	1750.2	0.398	0.497
333.12	1641.7	0.000	0.000		333.12	2181.2	0.399	0.473
	(20	/80)				(50/	50)	
273.34	385.0	0.199	0.351		273.35	489.4	0.498	0.667
283.17	525.4	0.199	0.334		283.17	662.2	0.497	0.656
293.17	704.7	0.199	0.325		293.09	879.3	0.496	0.647
303.09	923.2	0.198	0.310		303.11	1147.3	0.496	0.631
313.10	1192.2	0.199	0.299		313.12	1471.6	0.496	0.616
323.11	1515.5	0.199	0.289		323.14	1860.3	0.497	0.593
333.13	1899.4	0.200	0.270		333.14	2319.4	0.498	0.578
	(30	/70)			7	(100)/0)	
273.36	415.4	0.299	0.438		273.41	676.8	1.000	1.000
283.07	563.1	0.299	0.428	Y	283.15	909.4	1.000	1.000
293.10	753.6	0.299	0.417		293.20	1204.9	1.000	1.000
303.11	987.7	0.299	0.402		303.13	1566.5	1.000	1.000
313.10	1271.4	0.299	0.392		313.16	2008.1	1.000	1.000
323.12	1612.6	0.299	0.376		323.18	2538.5	1.000	1.000
333.14	2017.3	0.300	0.360		333.14	3169.4	1.000	1.000

Table A.3 Data of VLE Measurements for (1) R125/(2) R1234yf

 <i>T</i> [K]	P [kPa]	$x_1 [g g^{-1}]$	$y_1 [g g^{-1}]$	<i>T</i> [K]	P [kPa]	$x_1 [g g^{-1}]$	$y_1 [g g^{-1}]$
	(0/	100)			(40	/60)	
 273.35	318.7	0.000	0.000	273.32	452.8	0.398	0.572
 283.08	437.6	0.000	0.000	283.17	615.0	0.398	0.560
 293.11	592.5	0.000	0.000	293.14	819.6	0.398	0.546
 303.14	783.9	0.000	0.000	303.11	1070.7	0.397	0.529
 313.16	1020.2	0.000	0.000	313.18	1378.2	0.397	0.516
 323.19	1305.5	0.000	0.000	323.18	1743.3	0.398	0.498
 333.21	1646.1	0.000	0.000	333.19	2176.8	0.399	0.484
	(20/	80)			(50/5	50)	
 273.31	384.9	0.199	0.349	273.40	489.7	0.498	0.666
 283.14	525.2	0.199	0.339	283.13	660.7	0.498	0.657
293.16	704.5	0.199	0.331	293.14	880.1	0.498	0.643
 303.14	925.1	0.198	0.318	303.19	1150.7	0.498	0.625
 313.17	1194.9	0.199	0.307	313.17	1475.3	0.498	0.612
 323.16	1517.7	0.199	0.297	323.17	1863.0	0.499	0.592
333.16	1901.1	0.200	0.284	333.17	2326.2	0.500	0.580
	(30/	70)		7	(100	/0)	
 273.31	418.3	0.299	0.463	273.36	678.3	1.000	1.000
 283.15	569.2	0.298	0.448	283.08	910.1	1.000	1.000
 293.19	762.1	0.298	0.434	293.11	1206.8	1.000	1.000
 303.19	998.8	0.298	0.421	303.12	1569.3	1.000	1.000
 313.15	1283.8	0.298	0.404	313.15	2010.0	1.000	1.000
323.17	1628.0	0.299	0.386	323.16	2539.9	1.000	1.000
333.18	2036.7	0.300	0.373	333.19	3175.6	1.000	1.000

Table A.4 Data of VLE Measurements for (1) R125/(2) R1234yf

<i>T</i> [K]	P [kPa]	$x_1 [g g^{-1}]$	$y_1 [g g^{-1}]$
	(0/	(100)	
273.31	318.3	0.000	0.000
283.13	438.1	0.000	0.000
293.17	592.8	0.000	0.000
303.19	784.8	0.000	0.000
313.20	1020.1	0.000	0.000
323.13	1302.6	0.000	0.000
333.12	1641.7	0.000	0.000
	(25/	75)	
273.32	328.5	0.250	0.264
283.15	452.8	0.250	0.266
293.11	612.5	0.250	0.267
303.17	812.2	0.250	0.270
313.18	1058.2	0.250	0.269
323.19	1355.6	0.250	0.266
333.20	1711.1	0.250	0.265
	(50/	(50)	
273.33	324.3	0.500	0.482
283.16	449.8	0.500	0.489
293.13	611.6	0.500	0.490
303.08	812.2	0.500	0.498
313.18	1065	0.500	0.500
323.19	1369	0.500	0.498
333.20	1733	0.500	0.499

Table A.5 Data of VLE Measurements for (1) R134a/(2) R1234yf

	<i>T</i> [K]	<i>P</i> [kPa]	$x_1 [g g^{-1}]$	$y_1 [g g^{-1}]$
-		(75	5/25)	
-	273.32	315.3	0.750	0.711
-	283.20	439.9	0.750	0.725
-	293.17	600.7	0.750	0.728
-	303.17	801.8	0.750	0.735
-	313.19	1048.8	0.750	0.736
-	323.20	1359.1	0.750	0.737
-	333.21	1726.4	0.750	0.738
-		(100	/0)	
-	273.31	295.5	1.000	1.000
_	283.19	415.9	1.000	1.000
-	293.16	572.6	1.000	1.000
-	303.19	769.5	1.000	1.000
4	313.19	1017.3	1.000	1.000
	323.12	1316.8	1.000	1.000
	333.14	1680.7	1.000	1.000

1

 (x_1/x_2) Mixing ratio in mass

<i>T</i> [K]	<i>P</i> [kPa] .	$x_1 [g g^{-1}]$	$y_1 [g g^{-1}]$	<i>T</i> [K]	P [kPa]	$x_1 [g g^{-1}]$	$y_1 [g g^{-1}]$
	(0/1	00)			(50)/50)	
273.35	318.7	0.000	0.000	273.33	324.8	0.500	0.481
283.08	437.6	0.000	0.000	283.17	450.5	0.500	0.487
293.11	592.5	0.000	0.000	293.12	612.1	0.500	0.491
303.14	783.9	0.000	0.000	303.18	815.6	0.500	0.496
313.16	1020.2	0.000	0.000	313.11	1064.1	0.500	0.495
323.19	1305.5	0.000	0.000	323.21	1370.6	0.500	0.497
333.21	1646.1	0.000	0.000	333.16	1732.4	0.500	0.495
	(25/7	5)			(75/	25)	
273.32	326.3	0.250	0.261	273.34	315.6	0.750	0.713
283.18	450.9	0.250	0.265	283.14	439.2	0.750	0.721
293.15	610.8	0.250	0.263	293.18	601.1	0.750	0.726
303.20	810.4	0.250	0.267	303.20	802.1	0.750	0.729
313.20	1056.6	0.250	0.268	313.20	1053.7	0.750	0.741
323.20	1353.3	0.250	0.267	323.19	1358.1	0.750	0.745
333.21	1708.9	0.250	0.262	333.19	1724.5	0.750	0.744

Table A.6 Data of VLE Measurements for (1) R134a/(2) R1234yf

0

Figure 1. Schematic of vapor-liquid equilibrium measurement apparatus.

Figure 2. Results of VLE measurements for R32/R1234yf.

Figure 3. Results of VLE measurements for R134a/R1234yf

Figure 4. Results of VLE measurements for R134a/R1234yf

Figure 5. Isobaric VLE diagram

List of figure captions

Figure 1. Schematic of vapor-liquid equilibrium measurement apparatus.

Figure 2. Results of VLE measurements for R32/R1234yf.

Figure 3. Results of VLE measurements for R134a/R1234yf

Figure 4. Results of VLE measurements for R134a/R1234yf

Figure 5. Isobaric VLE diagram

Property	Unit	R32	R125	R134a	R1234yf
М	$g \text{ mol}^{-1}$	52.02	120.02	102.03	114.04
T _c	К	351.26	339.17	374.21	367.85
Pc	kPa	5782	3618	4059	3382
ω	-	0.277	0.305	0.327	0.280

Table 1 Substance constants of components.

inary interaction	r eng-Ko	binson	Helr	nholtz
parameter	Optimized (k_{12})	$k_{12} = 0$	Optimized (ζ_{12})	Default [REFPROP] (ζ_{12})
D22/D1224vf	0.63%	6.31%	1.13%	3.63%
K32/K1234y1	(0.037)	(0)	(-33.80)	holtz Default [REFPROP] (ζ_{12}) 3.63% (-44.43) 5.27% (-18.90) 4.35% (-25.96)
P125/P1234vf	0.50%	0.61%	0.35%	5.27%
K123/K1234y1	(0.004)	(0)	(-1.16)	Helmholtz mized Default [REFPROP] (ζ_{12}) 3% 3.63% 3.80) (-44.43) 35% 5.27% .16) (-18.90) 20% 4.35% 0.36) (-25.96)
P1340/P1234vf	0.33%	2.70%	0.20%	4.35%
K154a/K1254y1	(0.020)	(0)	(-10.36)	(-25.96)
	R			

Table 2 A.	venece chechuse	darrichian	f active to d	mmagazzana am d	he is a server	interestion .	
\mathbf{I} able \mathbf{Z} Av	verage ansonne.	deviation of	n samraieo	pressure and	DIDATY	interaction	parameters
1 4010 2 11	oruge abborate	ac manon o	1 Saturated	pressure and	omary	menaction	parameters

List of table captions

Table A.1 Data of VLE Measurements for (1) R32/(2) R1234yf

Table A.2 Data of VLE Measurements for (1) R32/(2) R1234yf

Table A.3 Data of VLE Measurements for (1) R125/(2) R1234yf

Table A.4 Data of VLE Measurements for (1) R125/(2) R1234yf

Table A.5 Data of VLE Measurements for (1) R134a/(2) R1234yf

Table A.6 Data of VLE Measurements for (1) R134a/(2) R1234yf

Table 1 Substance constants of components.

Table 2 Average absolute deviation of saturated pressure and binary interaction parameters.

Vapor-liquid equilibria measurement results for three binary refrigerant mixtures of R1234yf with R32, R125, and R134a are presented. Equilibrium pressures were measured at temperatures from 273 K to 333 K at 10 K intervals for each binary refrigerant mixture. Measured data were correlated by using Helmholtz-type equation of state combined with a mixing rule.